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Abstract: Speckle decorrelation analysis of optical coherence tomography 

(OCT) signal has been used in motion tracking. In our previous study, we 

demonstrated that cross-correlation coefficient (XCC) between Ascans had 

an explicit functional dependency on the magnitude of lateral displacement 

(δx). In this study, we evaluated the sensitivity of speckle motion tracking 

using the derivative of function XCC(δx) on variable δx. We demonstrated 

the magnitude of the derivative can be maximized. In other words, the 

sensitivity of OCT speckle tracking can be optimized by using signals with 

appropriate amount of decorrelation for XCC calculation. Based on this 

finding, we developed an adaptive speckle decorrelation analysis strategy to 

achieve motion tracking with optimized sensitivity. Briefly, we used 

subsequently acquired Ascans and Ascans obtained with larger time 

intervals to obtain multiple values of XCC and chose the XCC value that 

maximized motion tracking sensitivity for displacement calculation. 

Instantaneous motion speed can be calculated by dividing the obtained 

displacement with time interval between Ascans involved in XCC 

calculation. We implemented the above-described algorithm in real-time 

using graphic processing unit (GPU) and demonstrated its effectiveness in 

reconstructing distortion-free OCT images using data obtained from a 

manually scanned OCT probe. The adaptive speckle tracking method was 

validated in manually scanned OCT imaging, on phantom as well as in vivo 

skin tissue. 

©2015 Optical Society of America 

OCIS codes: (170.4500) Optical coherence tomography; (120.5800) Scanners; (030.6140) 

Speckle; (330.4150) Motion detection. 
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1. Introduction 

Speckle exists in images acquired with various imaging modalities using coherent sources, 

such as synthetic aperture imaging, ultrasound imaging, and optical coherence tomography 

(OCT) [1–3]. In OCT, speckle is often considered as noise that makes fine anatomic 

structures indiscernible. Over the years, researchers have developed various methods to 

suppress speckle noise in OCT images, including hardware compounding and digital signal-

processing [4–10]. On the other hand, speckle also carries information. For example, speckle 

texture in OCT images has been used to differentiate tissue type [11–13]. Moreover, OCT 

speckle can be used to infer tissue or probe dynamics, with high accuracy that scales with 

OCT’s spatial resolution. For example, OCT speckle tracking has been used to quantify tissue 

deformation during photocoagulation [14, 15], provide visualization or quantitative 

measurement of blood flow [16–23], correct motion artifact in manually scanned OCT 

imaging, and etc [24, 25]. 
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In our previous study, we have demonstrated that Pearson cross-correlation coefficient 

(XCC) between slightly displaced OCT Ascans had an explicit functional dependency on the 

magnitude of lateral motion [25]. Based on this finding, we developed a method for motion 

tracking by calculating XCC between subsequently acquired Ascans and converting XCC 

value to displacement. It was noted that there existed an optimized degree of decorrelation 

motion tracking. When the decorrelation between adjacent Ascans was very small (XCC close 

to 1) or very big (XCC close to 0), the result of motion tracking was dominated by noise. As a 

result, it was challenging to track motion speed that could vary in a large range using XCC 

between Ascans acquired with the same time interval. Therefore, there is an unmet need to 

achieve improved robustness in motion tracking based on OCT speckle analysis. 

In this study, we evaluated the sensitivity (S) of speckle motion tracking using the 

derivative of function XCC (δx) on variable δx, where δx indicates lateral displacement. We 

demonstrated that the magnitude of the derivative could be maximized and the optimized 

motion tracking robustness could be achieved using signals with appropriate amount of 

decorrelation for XCC calculation. Based on this finding, we developed an adaptive speckle 

decorrelation analysis strategy for robust motion tracking. For adaptive speckle tracking, we 

calculated a set of XCC values using Ascan pairs obtained with different intervals and 

selected the XCC that maximized S for motion tracking. Instantaneous motion speed can be 

calculated by dividing the obtained displacement with time interval between Ascans involved 

in XCC calculation. We also implemented the algorithm for adaptive speckle decorrelation 

analysis in real-time using graphic processing unit (GPU) and demonstrated its effectiveness 

in reconstructing distortion-free OCT image using data obtained from a manually scanned 

OCT probe. Imaging experiments were conducted on phantom as well as in vivo skin tissue. 

2. Principle 

In this study, we use a Cartesian coordinate system (x, y, z) to describe the 3D space. Light 

beam propagates along z direction. x and y are lateral coordinates orthogonal to z axis. In 

general, motion in 3D space is characterized by a vector with three independent components, 

δx, δy and δz. We assume the sample is static and the motion is attributed to light beam 

scanning in x direction. Therefore, the only nonzero component in the motion is δx, and δy = 

δz = 0. 

In our previous work, we theoretically derived and experimentally validated that the 

Pearson correlation coefficient XCC (ρ) between displaced Ascans has an explicit functional 

dependency on spatial displacement, as shown in Eq. (1) where ω0 indicates the beam waist of 

the probing beam [25]. Equation (1) suggests δx can be obtained from speckle decorrelation 

analysis. 
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An estimation of XCC ( ̂ ) between Ascan It(z) and It+Δt(z) is calculated using Eq. (2). 
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In Eq. (2), < > indicates taking the mean value of a signal; It(z) and It+Δt(z) are the 

intensity of Ascans acquired at time t and t + Δt; mt = <It(z)> and mt+Δt = <It+Δt (z)> are the 

mean values for It(z) and It+Δt(z), respectively; σt and σt+Δt are the standard deviations for It(z) 

and It+Δt(z), respectively. 

With XCC calculated using Eq. (2), an estimated value of lateral displacement ( ̂ ) can be 

obtained as below. 
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Due to the nonlinear relationship between ρ(δx) and δx (Eq. (1)) and between ̂ and ̂  

(Eq. (3)), the derivative of ρ(δx) on δx is not a constant. As a result, the same infinitesimal 

change in lateral displacement (dδx) will result in different change in XCC (dρ), for different 

value of δx. In practice, the estimation of ρ suffers from inaccuracy, and the same amount of 

inaccuracy in estimating ρ will lead to different amount of inaccuracy in estimating 

displacement δx. Therefore, it is critical to select an optimized operating point for 

decorrelation analysis. This is illustrated in Fig. 1 where the functional relationship between ρ 

and δx is plotted according to Eq. (1) with ω0 = 17μm. Consider three values of XCC (ρ1, ρ2 

and ρ3 in Fig. 1) and assume the same amount of uncertainty ( ± 0.035) in XCC measurement 

(red bars in vertical direction). Clearly, the same uncertainty in XCC will lead to different 

amount of inaccuracy in displacement estimation (blue bars in horizontal direction with 

different length) for different operating point in speckle decorrelation analysis, due to the 

nonlinear relationship between ρ and δx. 

 

Fig. 1. Person cross-correlation coefficient (XCC) versus lateral displacement δx. The same 

amount of uncertainty in calculating XCC results in different inaccuracy in estimating 

displacement δx. 

We define the sensitivity (S) of speckle motion tracking as the absolute value of the 

derivative of ρ(δx) on δx (Eq. (4)) [26]. Figure 2 show how S varies as δx. Clearly, there exists 

a maximum value of S (Smax). 
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Fig. 2. Sensitivity S at different values of displacement. 

Analytically, the value of δx that maximizes S can be found when dS/dδx = 0. This 

relationship is shown explicitly in Eq. (5). Clearly, S is maximized when δxmax = ω0/√2 or ρmax 

= e
-1/2

. 
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In this study, we propose to use the XCC value that approximately equals ρmax and 

maximizes S for robust motion tracking. In other words, we select XCC value most sensitive 

to change in displacement δx for speckle decorrelation analysis [26]. This is because a large S 

is desirable for speckle tracking. With a large S, change in displacement δx can result in 

measurable change in XCC. Otherwise, the measurement of XCC is overwhelmed by random 

noise [27]. For example, if two Ascans with small displacement (δx<< ω0) or large 

displacement (δx>>ω0) are chosen for decorrelation analysis, S is approximately 0, leading to 

a compromised sensitivity in speckle motion tracking. 

Theoretically, there may exist an optimal ω0 for the proposed method. However, the beam 

waist ω0 is determined by the optics of imaging probe. Once the probe is designed and 

fabricated, ω0 remains the same. Therefore, it is challenging to practically optimize ω0 in 

manually scanned OCT instruments. 

In our robust speckle tracking, we will calculate XCC values using multiple pairs of 

Ascans: It and It+Δt, It and It+2Δt, It and It+3Δt, …, It and It+NΔt, where Δt is the time interval 

between the acquisition of adjacent OCT Ascans. Using N different pairs of Ascans, N 

different values of XCC are obtained: ρΔt, ρ2Δt, ρ3Δt,… and ρNΔt. With sufficiently small Δt and 

sufficiently large N, we will be able to find one XCC close enough to ρmax. We can thus 

choose the value of XCC closest to ρmax to calculate displacement for robust motion tracking. 

3. OCT system 

We used a spectral domain OCT (SD OCT) engine at 1.3μm for this study. More details of 

this system can be found in our previous work [23]. The system uses a superluminescent 

diode as light source (SLD1325 Thorlabs, 100 nm bandwidth, corresponding to a 7.4 μm axial 

resolution). Interferometric signal is detected by a CMOS InGaAs camera (SUI1024LDH2, 

Goodrich). A frame grabber (PCIe-1433, National Instrument) takes the interferometric signal 

from the camera. Results in 4.1 were obtained based on a Michelson interferometer with 

reference and sample arms. In the sample arm of the Michelson interferometer, the light beam 

is scanned by a galvanometer and a 3X scanning lens (SLM04, Thorlabs) is used in front of 

the sample. The e
1

 lateral resolution of the system is 17 μm according to experimental 

characterization and therefore ω0 = 17 μm. This configuration allowed us to accurately control 

the transverse motion and thus validate the proposed adaptive speckle tracking method. Data 
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analysis was performed with Matlab. Signal to noise ratio (SNR) for images used in speckle 

decorrelation analysis in Section 4.1 was 43 dB, according to the following definition: SNR = 

10log10(Imean
2
/σ

2
). Here Imean indicates mean signal amplitude and σ

2
 indicates noise variance. 

Results in 4.2 were obtained from a common path interferometer and signal was processed in 

real-time with GPU in a host computer (Dell Precision T7600) based on software developed 

in C + + (Microsoft Visual Studio, 2012). In the common path interferometer, a single mode 

fiber with flat tip was used as probe arm. Reference light derived from the fiber tip and shared 

the same probe path as sample light. Such a system acquired OCT signal from a simple, 

robust single mode fiber probe. The e
1

 lateral resolution ω0 as 43 μm for the depth range used 

in speckle tracking according to experimental characterization. 

4. Results 

4.1 Experimental validation of adaptive speckle decorrelation analysis for motion tracking 

To validate Eq. (1) and (4), we performed Bscan imaging on a phantom made by mixing 

titanium dioxide with optical epoxy. Bscan images were obtained by steering the light beam 

in x direction with a galvanometer scanner (Thorlabs, GVS012, 99.9% linearity and a 400 μs 

step response time). The galvanometer was driven by sawtooth functions with different 

amplitude to acquire different Bscan images at an 89 Hz frame rate. For each Bscan, we 

excluded the first 150 Ascans (1600 μs after the Bscan started) and used the rest of Ascans for 

speckle decorrelation analysis, so that the only source of motion was constant speed lateral 

scanning of light beam in x direction. With identical line-scan interval (Δt = 10.9 μs) of the 

camera, the displacement between adjacent Ascans was proportional to voltage applied to the 

galvanometer. 

The relationship shown in Eq. (1) assumes fully developed speckle with scatterers in 

different spatial location described by identical but independent random variables [25, 29]. To 

validate the statistics of speckled signal, we calculated the probability density functions (PDF) 

of OCT signal (Bscan). To obtain the PDF, we first converted each OCT Bscan to unitless 

image by normalizing its magnitude with its mean value. Afterwards, we calculated the 

probability for normalized, unitless signal magnitudes. Results corresponding to Bscans 

obtained with different scanning speeds are shown as thin lines with different colors in Fig. 

3(a). In Fig. 3(a), Rayleigh distribution (thick black curve) which is the standard PDF for fully 

developed speckle (for imaged normalized to its mean value) is also shown [28, 29]. Our 

results suggests PDFs obtained from experimental data are highly consistent with standard 

Rayleigh PDF and the model of fully developed speckle is valid for data obtained in our 

experiments. 

Notably, speckle statistics of OCT signal particularly higher order statistics such as 

correlation depends on its lateral resolution which varies as imaging depth. Therefore, we 

used segment of Ascan signal in the vicinity (100 μm) of beam waist to calculate PDF and 

perform speckle tracking. The beam waist was located 150 μm under the sample surface and 

300μm from the equal optical-path-length plane. The depth range was chosen because: first, 

the chosen Ascan segments had high SNR, due to focused light beam, small light attenuation, 

and negligible sensitivity roll-off; second, our model assumed a constant beam diameter and 

ω0 remained approximately constant within the 100μm segment which was significantly 

smaller compared to the 700 μm Rayleigh range of the incident light beam, although ω0 

generally depends on depth. In addition, ω0 = 17 μm is valid for light beam in vacuum (or 

air). The beam waist in our phantom (ωphantom) was smaller than ω0 and could be obtained by 

dividing ω0 with phantom refractive index (n = 1.4). Therefore, δxmax = ωphantom / 2  = 

ω0/  2n . Given ω0 = 17 μm, the optimal displacement should be approximately 8.6 μm, as 

to be shown in our experimental results. 
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To validate Eq. (1) using the same experimental data leading to Fig. 3(a), we calculated 

the cross-correlation coefficient between subsequently acquired Ascans, It and It+Δt, in Bscan 

image obtained with spatial sampling interval δx0. The resultant XCC is denoted as ρt(δx0). 

We averaged ρt(δx0) at different t to obtain ρ(δx0). Similarly, ρ(δx1), ρ(δx2), ρ(δx3) … were 

obtained using Bscan images with spatial sampling interval δx1, δx2, δx3…. δx0, δx1, δx2, δx3… 

were in a range from 1μm to 33 μm. The results are shown in Fig. 3(b) as blue circles. Error 

bars were obtained using the standard deviation of ensemble values of XCC. Figure 3(b) also 

shows the values of XCC at different displacements according to Eq. (1) (red curve with ω0 = 

17μm). In addition, we validated the relationship between sensitivity (S) in motion tracking 

and displacement (δxk) shown in Eq. (4) using experimental data. For Bscan image obtained 

with spatial sampling interval δxk, we compared ρ(δxk) and ρ(δxk + dδx) obtained from Ascan 

pairs with displacements δxk and δxk + dδx, and calculated the ratio between [ρ(δxk + dδx)-

ρ(δxk)] and dδx for the evaluation of S. The results are shown in Fig. 3(c) (circle: experimental 

data; red curve: theory). Figure 3(b) and 3(c) clearly validated the effectiveness of Eq. (1) and 

(4). 

 

Fig. 3. (a) PDFs of OCT signals used for speckle decorrelation analysis and standard Rayleigh 
PDF; comparison between theoretical and experimental results for (a) XCC and (b) S at 

different displacements. 

According to discussion in Section 2 and results shown in Fig. 3, it is ideal to select 

Ascans with appropriate displacement (δxmax = ω0/  2n  and appropriate degree of 

decorrelation (ρmax = e
-1/2

) for speckle tracking. To further validate this, we performed speckle 

decorrelation analysis using data from a Bscan with 0.37 μm lateral scanning interval. We 

calculated XCC between Ascans with small time interval (Δt, 2Δt, and 3Δt) and thus small 

lateral displacements (0.37 μm, 0.74 μm and 1.11 μm). We also calculated XCC between 

Ascans with medium time interval (21Δt, 22Δt, and 23Δt) and thus medium lateral 

displacements approximating δxmax = 8 μm (7.73 μm, 8.09 μm and 8.47 μm); as well as XCC 

between Ascans with large time interval (45Δt, 46Δt, and 47Δt) and thus large lateral 

displacements (16.56 μm, 16.93 μm and 17.30 μm). In this analysis, Ascans with large 

displacement (17 μm) were obtained at a 480μs time interval. This time interval was small 

enough so that the decorrelation was induced by speckle rather than other random factors. 

XCC values obtained are shown in Fig. 4(a), 4(b) and 4(e), corresponding to small, 

appropriate and large degree of decorrelation. Using XCC values obtained, we extracted 

displacements using Eq. (3) and show results in Fig. 4(d), 4(e) and 4(f). Figure 4(d) shows 

that the estimated magnitude of motion is larger than its actual value if the XCC values are 

close to 1. With small displacement and thus XCC value close to 1, the decorrelation is 

dominated by random noise in OCT signal, resulting in an overestimated motion. On the other 

hand, motion is underestimated in Fig. 4(f) where Ascans with large displacement are used to 

calculate XCC. This is because the expected value of XCC is extremely small (Eq. (1), Fig. 1) 

when δx is large and the estimated displacement is determined by the non-zero noise floor in 

XCC measurement. In comparison, displacements obtained using XCC values close to s ρmax 

(ρmax = e
-1/2

) (Fig. 4(b) and 4(e)) are consistent with actual displacements. Results in Fig. 4 
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show that it is critical to use Ascans with appropriate degree of decorrelation for motion 

tracking. 

 

Fig. 4. (a) XCC values calculated using Ascans with small displacements; (b) XCC values 
calculated using Ascans with medium displacements; (c) XCC values calculated using Ascans 

with large displacements; (d) displacements obtained using XCC values in Fig. 4(a); (e) 

displacements obtained using XCC values in Fig. 4(b); (f) displacements obtained using XCC 
values in Fig. 4(c). 

In practice, motion of sample or probe in OCT imaging can have speed varying in a large 

range and two Ascans acquired with a fixed time interval can have very small or very large 

displacement. According to results shown in Fig. 3 and Fig. 4, XCC between subsequently 

acquired Ascans can be close to 1 or close to 0, corresponding to a limited accuracy in motion 

tracking. Therefore, adaptive speckle decorrelation analysis that estimates displacement using 

Ascans with XCC close to ρmax can achieve more robust speckle tracking over a large range of 

motion speed. 

To demonstrate the advantage of the adaptive motion tracking algorithm, we compared the 

results obtained from different speckle decorrelation analysis strategies for motion tracking, 

as shown in Fig. 5. We used OCT data in Bscans obtained with different lateral scanning 

speeds in our analysis and the horizontal axis in Fig. 5 indicates lateral scanning speeds. 

For Bscan acquired with a certain lateral scanning speed, we calculated XCC values 

(averaged) using Ascan pairs with different time intervals (Δt, 2Δt, 4Δt, 8Δt, and 16Δt) and 

hence displacement between Ascan pairs shown as circles in different colors in Fig. 5. 

Notably, when Ascans with time interval kΔt were used for speckle tracking, the resultant 

XCC and the lateral displacement (δx(kΔt)) corresponded to time interval kΔt. Therefore, the 

displacement between subsequently obtained Ascans was calculated by dividing δx(kΔt) with 

k. On the other hand, we performed adaptive decorrelation analysis using the same set of 

experimental data. For each Bscan acquired with a certain lateral scanning speed, we 

calculated XCC values (averaged) using Ascan pairs with different time intervals (Δt, 2Δt, 

3Δt, 4Δt…., 16Δt) and denoted the results as ρΔt, ρ2Δt, ρ3Δt, ρ4Δt, …, ρ16Δt. We then chose the 

XCC value (ρmΔt) closest to ρmax = e
-1/2

 to calculate the displacement δx(mΔt) between two 

Ascans acquired with time interval mΔt and the displacement between adjacent Ascans which 

was δx(mΔt)/m. Results obtained from adaptive speckle decorrelation analysis are shown as 

black triangles in Fig. 5. To evaluate the performance of different speckle tracking methods, 

we also show the actual displacement between adjacent Ascans in Fig. 5 (solid black line) 

according to the known scanning speed and Ascan acquisition rate. As shown in Fig. 5, 

displacement obtained from XCC between Ascans with fixed time interval deviates from its 

actual value, no matter the time interval is small or large. Displacement estimated by 
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calculating XCC between Ascans with small time intervals (Δt and 2Δt) is larger than its 

actual value for small speed. On the other hand, displacement obtained by calculating XCC 

between Ascans with large time intervals (4Δt, 8Δt and 16Δt) is smaller than its actual value 

for large speed. This is also consistent with results shown in Fig. 4(d) and 4(f). In comparison, 

adaptive speckle tracking provides a closer approximation to actual displacement over a large 

range of motion speed and outperforms speckle tracking based on XCC between Ascans with 

fixed time intervals. 

From a different perspective, inaccuracy in displacement quantification for small or large 

decorrelation (XCC1 or XCC0) is due to the small value of motion tracking sensitivity, S. 

As shown in Fig. 3(c), when displacement is very small (XCC1) or value large (XCC0), S 

is approximately 0. With extremely small S, change in displacement does not lead to 

measurable change in XCC and therefore the estimated displacement appears saturated. 

 

Fig. 5. Displacement estimation (circles) based on XCC between Ascans with fixed time 

intervals at different lateral scanning speeds; displacement estimation (triangles) based on 

adaptive XCC calculation for robust motion tracking at different lateral scanning speeds. 

To further validate that our adaptive speckle decorrelation analysis can track motion with 

nonconstant speed, we applied sinusoidal voltage with period T (T = 5.5 ms) to the 

galvanometer scanner and acquired OCT signal within a time span of 2T. We stacked 

sequentially acquired Ascans and show the resultant 2D data in Fig. 6(a). Due to the 

sinusoidal voltage applied to the galvanometer, the speed of lateral scanning was not constant. 

Therefore, distortion artifacts are clearly visible in Fig. 6(a). To obtain the magnitude of speed 

by analyzing acquired OCT signal, we performed adaptive speckle decorrelation analysis to 

derive the speed of motion and show the result as dashed black curve in Fig. 6(b). For 

comparison, we used Ascans acquired subsequently with time interval Δt for XCC calculation 

and motion tracking, with results shown the red dashed curve in Fig. 6(b). We also used 

Ascans pairs acquired with larger time interval (10Δt) for motion tracking, with results shown 

the green dashed curve in Fig. 6(b). The ground truth scanning speed is plotted as the solid 

black curve for comparison. Results of motion tracking shown in Fig. 6(b) correspond to two 

periods of the sinusoidal voltage and four speed peak can be observed because speckle 

decorrelation analysis extracts the magnitude of lateral motion that can have positive or 

negative values. Clearly, adaptive speckle decorrelation analysis provides a better 

approximation of the beam scanning speed. 
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Using scanning speeds obtained from different speckle decorrelation analysis strategies, 

we re-sampled Ascans shown in Fig. 6(a) to correct motion artifact due to nonconstant beam 

scanning speed. Reconstructed images are shown in Fig. 6(c), 6(d) and 6(c), based on 

adaptive speckle decorrelation analysis, speckle decorrelation analysis of Ascans with small 

time interval (Δt = 10.9 μs), and speckle decorrelation analysis of Ascans with large time 

interval (10Δt = 109 μs). We also used the actual sinusoidal beam scanning speed to correct 

image artifact and obtained Fig. 6(f). Compared to Fig. (d) and (e), Fig. 6(c) better resembles 

Fig. 6(f), suggesting that more robust motion tracking through adaptive speckle decorrelation 

analysis can provide better correction of image artifact. 

 

Fig. 6. (a) 2D images of sequentially obtained Ascans; (b) estimated speed using small interval, 

large interval and adaptive speckle decorrelation analysis. 2D images of Ascans after distortion 
artifact corrected based on (c) the proposed adaptive speckle decorrelation analysis strategy, 

(d) speckle decorrelation with small time interval, (e) large time interval and (f) use the ground 

truth beam scanning speed. 

4.2 Real-time distortion-free manual-scanning OCT imaging based on adaptive speckle 

decorrelation analysis 

To demonstrate the effectiveness of adaptive speckle tracking in real-time imaging, we 

developed software to reconstruct distortion-free OCT images using signals obtained from a 

manually scanned probe. The algorithm is described in detail below. With M spectral 

interferograms acquired as a frame by the frame grabber, we subtracted reference spectrum 

from the measured interferograms, converted data from wavelength space to wavenumber 

space and performed fast Fourier transform (FFT) to obtain M Ascans. Afterwards, adaptive 

speckle decorrelation analysis illustrated in Fig. 7 was performed. For the i
th

 Ascan (Ii) in the 

frame acquired at time t, we used Eq. (2) to calculate XCC values between Ii and subsequent 

Ascans, Ii + 1, Ii + 2, Ii + 3, …, acquired at t + Δt, t + 2Δt, t + 3Δt, …, with Δt indicating the time 

interval between the acquisition of adjacent Ascans (Fig. 7(a)). Resultant XCC values, ρi,Δt, 

ρi,2Δt, ρi,3Δt,…, were expected to be different as illustrated in Fig. 7(b), according to our 

theoretical analysis and experimental results shown in Fig. 1 and Fig. 3(b). We then selected 

XCC that was closest to ρmax (dashed red line in Fig. 7(b)) for robust motion tracking, as 

indicated by the red arrow in Fig. 7(b). Denote the data point used for displacement 

calculation as ρi,mΔt. The lateral displacement between the i
th

 Ascan Ai and the (i + m)
th

 Ascan 

Ii + m could be calculated using Eq. (3): δxi,m = ω0[ln(1/ρi,m)]
1/2

. Assuming constant motion 

during the acquisition of Ii, Ii + 1, Ii + 2, Ii + 3, Ii + 4 …, Ii+k, we were able to estimate the 

displacement between the i
th

 Ascan and the subsequent Ascan: δxi = δxi,m/m. Procedures for 
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XCC calculation and displacement estimation shown in Fig. 7(a) and 7(b) were performed for 

all M Ascans obtained in the frame, to obtain displacements between adjacent Ascans, δx1, 

δx2, …, δxM-1. Due to the nonconstant beam steering speed in manual scanning, δx1, δx2, …, 

δxM-1 had different values, as shown in Fig. 7(c). For distortion-free OCT imaging, we 

established a grid to place Ascans with identical interval δxs. Signal values of the grid were 

obtained through interpolation using raw Ascan data and actual displacement values (δx1, δx2, 

…, δxM-1) derived from adaptive speckle decorrelation analysis. Given spatially oversampled 

OCT signal, we were able to obtain Mdecorr (Mdecorr<M) Ascans to form a distortion-free 2D 

image (I0). We then attached I0 to the end of the existing 2D distortion-free image and update 

the display. 

 

Fig. 7. (a) Calculation of cross-correlation between Ascan pairs acquired with different time 

intervals; (b) the value of XCC closest to ρmax is chose for robust motion tracking; (c) 

reconstruct distortion-free 2D OCT imaging and update display. 

The above-described software was implemented in real-time, summarized as flow chart 

shown in Fig. 8(a). To estimate the motion speed between adjacent Ascans, we calculated 16 

values of XCC using Ascans with different time intervals. Procedures indicated by red boxes 

were implemented using GPU. Signal processing speed was analyzed using NVidia Nsight 

embedded in Visual Studio. Ascans were processed on average at a speed of 120 kHz which is 

faster than the highest data acquisition speed of the line scan camera used in our OCT system 

(92 kHz). The most time consuming computation tasks in our algorithm are shown Fig. 8(b). 
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Fig. 8. (a) Data processing flowchart for imaging reconstruction based on robust motion 

tracking using adaptive speckle decorrelation analysis. 

To validate the robustness of adaptive speckle tracking in real-time imaging, we made a 

phantom (photo shown in Fig. 9(a)) by covering 1 line/mm Ronchi Ruling Pattern with 

multiple layers of Scotch tapes and performed manual scanning using a single mode fiber 

OCT probe. Signal was processed in real-time using our home-made GPU software. Motion 

was limited in x dimension. To prevent axial motion (z dimension) from decorrelating the 

signal, we maintained the probe at the same height from the phantom surface during imaging. 

In addition, we constrained the motion with a barrier along x direction to exclude motion in y 

direction. We compared images reconstructed using XCCadaptive that was obtained through 

adaptive speckle decorrelation analyses, with images reconstructed using XCC between 

adjacent Ascans (XCCadj). Notably, signal within depth range corresponding to Scotch tape 

layers was used to calculate XCC. Otherwise, the periodical lateral structure from the ruling 

pattern might affect the accuracy of speckle tracking. Images obtained using XCCadaptive and 

XCCadj are shown in Fig. 9(b) and 9(c). Clearly, Fig. 9(b) shows well defined periodical 

structure while residual distortion exists in Fig. 9(c). Distortion artifact can be seen more 

clearly within the dashed rectangular box in Fig. 9(c). To quantitatively compare the accuracy 

of motion tracking based on XCCadaptive and XCCadj, we averaged OCT signal within depth 

range indicated by the green arrow in Fig. 9(b). The result was subtracted with its mean value 

(Fig. 9(d) and 9(e), blue curve) and low pass filtered (Fig. 9(d) and 9(e), black, dashed curve). 

We then identified zero-crossing points corresponding to the edge of the bars in the ruling 

pattern, as indicated by red circles in Fig. 9(d) and 9(e). For clear visualization of zero-

crossing points, Fig. 9(d) and 9(e) show results of edge detection within lateral range 

indicated by the red arrow in Fig. 9(b). Figure 9(d) shows a more uniform distribution of zero-

crossing points compared to Fig. 9(e). The actual distance between adjacent zero-crossing 

points is the same for different bars in the periodical ruling pattern and a more uniform 

distribution of zero-crossing points suggests better performance in motion artifact removal. 

Therefore, results in Fig. 9(d) and 9(e) show that motion tracking based on XCCadaptive 

outperformed motion tracking based on XCCadj. We repeated the manual scanning 

experiments for four times, and performed motion tracking using XCCadaptive and XCCadj, 

respectively. To evaluate the quality of reconstructed image in terms of motion artifact, we 

performed zero-crossing detection on OCT signal and obtained the number of Ascans 

(NAscan_bar) between adjacent zero-crossing points. NAscan_bar had different values for different 

pairs of zero-crossing points and the robustness of motion tracking was quantified using the 

ratio between the standard deviation and the mean of NAscan_bar, denoted as Radaptive and Radj, 

for images reconstructed using XCCadaptive and XCCadj. Radaptive and Radj were averaged using 

data obtained from all the four experiments and turned out to be 0.11 and 0.27, indicating a 

significant improvement in motion artifact removal through adaptive speckle decorrelation 

analysis. 
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Fig. 9. (a) Photo of the phantom; (b) OCT image obtained by manual scanning; image 

reconstructed using XCCadaptive; (c) OCT image obtained by manual scanning; image 
reconstructed using XCCadj; (d) detecting edge of the ruling pattern in the image obtained using 

XCCadaptive through zero-crossing detection; (e) detecting edge of the ruling pattern in the image 

obtained using XCCadj through zero-crossing detection. 

The advantage of adaptive speckle analysis is further illustrated in videos acquired in real-

time using our GPU software. Visualization 1 and Visualization 2 were obtained by imaging 

the phantom shown in Fig. 9(a) with a manually scanned single mode fiber probe, based on 

motion tracking with XCCadaptive and XCCadj. Screen captures of the software are shown in 

Fig. 10(a) and 10(b). During the acquisition of Visualization 1 and Visualization 2, we first 

scanned the single mode fiber probe slowly and then with higher speed. Due to improved 

robustness through adaptive speckle decorrelation analysis, Visualization 1 can reveal the 

periodical structure of the resolution target in the reconstructed 2D image. In comparison,  

Visualization 2 obtained using speckle analysis between adjacent Ascans shows distorted 2D 

image due to limited dynamic range in motion tracking. 

 

Fig. 10. (a) Screen capture for OCT image reconstructed using XCCadaptive, Visualization 1; (b) 
screen capture for OCT image reconstructed using XCCadj, Visualization 2. 

We performed manual scanning using a single mode fiber probe on the skin of a healthy 

volunteer and obtained distortion-free images through adaptive speckle decorrelation analysis. 

Images were obtained from the skin of forearm (Fig. 11(a) and Visualization 3), fingertip 

(Fig. 11(b)), volar of hand (Fig. 11(c)) and dorsum of hand (Fig. 11(d)). Scale bars in Fig. 11 

indicate 250μm. Skin layers (stratum corneum, epidermis, dermis, subcutaneous adipose 

tissue) are clearly visible. Figure 11(b) and 11(c) also show sweat ducts as indicated by green 

arrows. In Fig. 11(d), blood vessels that cause image shadow can be observed, as indicated by 

white arrows. 
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Fig. 11. in vivo distortion-free image of skin obtained through robust motion tracking, from a 

healthy volunteer. (a) forearm, Visualization 3; (b) skin of fingertip; (c) volar of hand; (d) 
dorsum of hand. Scale bars indicate 250 μm. 

5. Conclusion and discussion 

In this study, we developed an adaptive speckle decorrelation analysis strategy. We calculated 

XCC using Ascans with different time intervals and selected the XCC value that maximizes 

motion tracking sensitivity for displacement calculation. This method was validated using 

experimental data. We implemented the algorithm for robust motion tracking in GPU 

software to reconstruct distortion-free image for a manually scanned OCT system. Images 

were obtained from phantom and human skin. 

The motion tracking method described in this manuscript enables scanner-free OCT 

imaging based on a manually actuated miniature single mode fiber probe. Such an imaging 

configuration offers great flexibility to access pathological region of interest in clinical 

diagnosis and surgical guidance. It can achieve a large lateral field-of-view (FOV) that is 

independent of lateral resolution. This is a desirable when imaging region of interest has a 

large dimension, such as in OCT’s application for tumor margin delineation. Conventionally, 

Bscan OCT image is obtained by steering collimated light beam with galvanometer in front of 

an imaging lens. In such a sample arm configuration, the lateral FOV limited by the 

dimension of imaging optics. To achieve a large lateral FOV at a given lateral resolution, the 

dimension of the imaging lens has to be large. To demonstrate this, we performed Bscan 

imaging on the phantom used in section 4.2 using conventional sample arm configuration 

with a 10X scanning lens (Thorlabs, LSM02, 13 μm 1/e
2
 beam waist size). The resultant 

image is shown in Fig. 12 with a 3.4mm lateral FOV. The scale bar in Fig. 12 represents 500 

μm. The surface of the phantom appears curved, because light beam had large aberration 

when passing through the edge of the scanning lens. In comparison, Fig. 9(b) and 9(c) are free 

of such image artifact due to beam aberration and have a significantly larger FOV compared 

to Fig. 12. 

 

Fig. 12. Bscan image obtained from the phantom shown in Fig. 9(a), using a sample arm 

configuration based on galvanometer and scanning lens. Scale bars indicate 500μm. 

Speckle tracking developed here provides quantification for the magnitude of motion. 

Although motion in 3D space is essentially a three dimensional vector, our speckle 

decorrelation analysis can provide satisfactory performance in tracking motion with limited 

degree of freedom. When OCT signal is decorrelated by motion with non-zero components in 
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dimensions other than x direction, it is challenging to fully correct motion artifact through 

speckle tracking. However, 2D image consisting of re-sampled Ascans will appear 

undistorted. This allows morphological feature of the sample to be identified through visual 

inspection. Otherwise, multiplicative speckle noise randomly modulates the magnitude of 

OCT signal and morphological features are not discernable in simple Ascan display or 2D 

image obtained by directly stacking sequentially acquired Ascans. 

For the application of speckle tracking, it is critical to achieve a large dynamic range in 

motion speed measurement. Particularly, the adaptive speckle tracking in this paper allows 

more accurate tracking of small motion speed, compared to the method we developed before 

based XCC between adjacent Ascans. If Ascans acquired subsequently with time interval Δt 

are used in decorrelation analysis, the smallest speed that can be reliably measured is 

inversely proportional to Δt: vmin = Dmin/Δt. Here, Dmin indicates the smallest displacement that 

can be reliably measured. As a result, it is challenging to track slow motion using an OCT 

system with high imaging speed (small Δt). In comparison, the adaptive speckle tracking 

methods calculates XCC using Ascans with larger time interval (kΔt where k is larger than 1) 

and can be sensitive to slow motion. On the other hand, the maximum motion speed that can 

be estimated accurately by the adaptive speckle tracking method is still determined by OCT 

system’s data acquisition rate. If the scanning speed is so large that the displacement within Δt 

is significantly larger than the beam waist size ω0, subsequently acquired Ascans are 

completely decorrelated and calculating XCC using adjacent Ascans or Ascans with larger 

time interval cannot provide effective quantification of motion. However, current high-speed 

OCT system allows us to track a large scanning speed and does not pose a significant 

limitation in practice. Assume an OCT system has a 92 kHz Ascan rate (R) and the lateral 

interval between adjacent Ascans is δxmax = 10 μm. The highest trackable speed is thus 0.46 

m/s (v = δxmaxR), and is a very large scanning speed for the application of manual scanning 

OCT imaging. 

Intuitively, there exists an optimal value of XCC between 0 and 1 for speckle 

decorrelation analysis. If Ascans involved in XCC calculation are completely decorrelated, 

the resultant XCC is small but does not carry any information about displacement. If Ascans 

involved in XCC calculation are almost identical, the resultant XCC value is dominated by 

additive noise in OCT signal rather than spatial displacement. In this study, we chose to select 

XCC value that maximized S defined in Eq. (4) to achieve robust motion tracking. We 

successfully demonstrated adaptive motion tracking using XCC that maximized. On the other 

hand, XCC measurement that suffers from uncertainty that can be quantified by σxcc (standard 

deviation) [30]. An alternative strategy is to perform speckle tracking using XCC values that 

optimize the ratio between S and σxcc: (η = S/σxcc). However, σxcc is generally unknown for an 

arbitrary sample, therefore optimizing η is an untraceable problem. 
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